安装必要的库
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
读取数据集
data = pd.read_csv('dataset.csv')
数据预处理
X = data.drop(['target'], axis=1)
y = data['target']
划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
创建逻辑回归模型
model = LogisticRegression()
训练模型
model.fit(X_train, y_train)
预测测试集结果
y_pred = model.predict(X_test)
计算准确率
print('Accuracy: ', accuracy_score(y_test, y_pred))
打印混淆矩阵
print(confusion_matrix(y_test, y_pred))
请让我知道你是否需要更多的帮助。
0